

#### **Contrastive Cross-Domain Sequential Recommendation**

Jiangxia Cao Institute of Information Engineering, Chinese Academy of Sciences School of Cyber Security, University of Chinese Academy of Sciences caojiangxia@iie.ac.cn Xin Cong Institute of Information Engineering, Chinese Academy of Sciences School of Cyber Security, University of Chinese Academy of Sciences congxin@iie.ac.cn

Tingwen Liu\* Institute of Information Engineering, Chinese Academy of Sciences School of Cyber Security, University of Chinese Academy of Sciences liutingwen@iie.ac.cn Bin Wang Xiaomi AI Lab, Xiaomi Inc wangbin11@xiaomi.com

https://github.com/cjx96/C2DSR







**Reported by Yabo Yin** 

Jiawei Sheng

Institute of Information Engineering,

Chinese Academy of Sciences School of Cyber Security, University

of Chinese Academy of Sciences

shengjiawei@iie.ac.cn





Chongqing University of Technology

ATAI Advanced Technique of Artificial Intelligence



#### **1.Introduction**

**2.Method** 

**3.Experiments** 













## Introduction

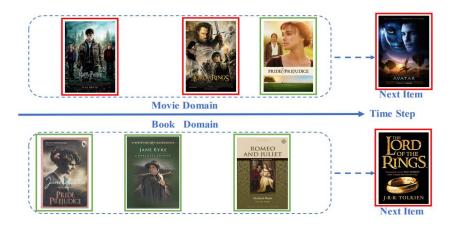



Figure 1: Illustration of user's sequential interactions in Movie and Book domains. Movie or book surrounded by the same color reflects similar user preference, where the green/red represent the "Romance"/"Fantasy" preferences.

- Simply transferring the biased single-domain preference can be intractable to describe precise cross-domain user preference, which would easily lead to unstable and sub-optimal recommendation results.
- 2. previous CDSR works ignore the inter-sequence relationship of items, which provides valuable collaborative signal to generate better user representation.

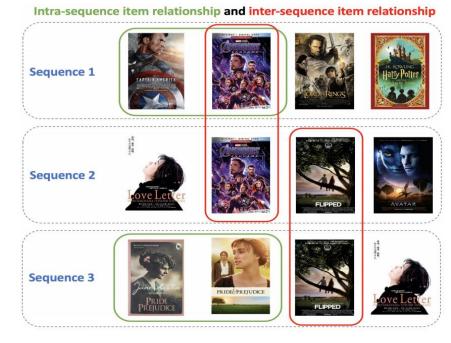



Figure 2: A toy illustration of item relationships. The green boxes reflect the sequential pattern signal of intra-sequence item relationships. The red boxes reflect the collaborative signal of inter-sequence item relationships.



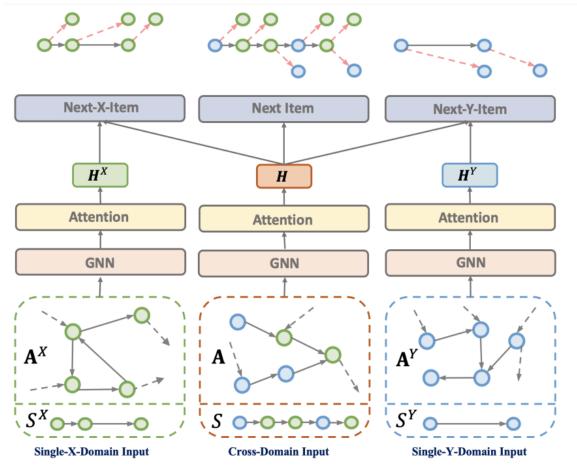
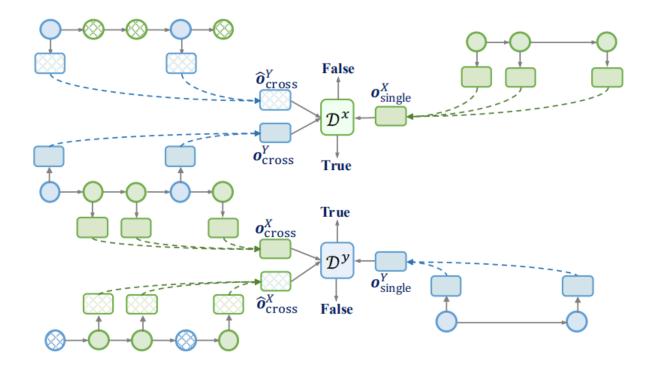


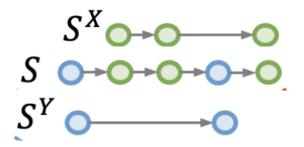
#### Intra-sequence item relationship and inter-sequence item relationship



Figure 2: A toy illustration of item relationships. The green boxes reflect the sequential pattern signal of intra-sequence item relationships. The red boxes reflect the collaborative signal of inter-sequence item relationships.





Figure 3: A toy example of sequential training objective for CDSR. The red dotted lines indicate the next prediction item.





#### Preliminaries

interaction sequence involves two domains, namely domain *X* and domain *Y*.  $(S^X, S^Y, S)_u \in S$  belongs to a certain user u.  $S^X = [x_1, x_2, \dots, x_{|S^X|}]$  and  $S^Y = [y_1, y_2, \dots, y_{|S^Y|}]$  $S = [y_1, x_1, x_2, \dots, y_{|S^Y|}, \dots, x_{|S^X|}]$  $\mathbf{A}^{X} \in \{0,1\}^{|\mathcal{X}| \times |\mathcal{X}|}, \mathbf{A}^{Y} \in \{0,1\}^{|\mathcal{Y}| \times |\mathcal{Y}|}, \mathbf{A} \in \{0,1\}^{(|\mathcal{X}| + |\mathcal{Y}|) \times (|\mathcal{X}| + |\mathcal{Y}|)}$ where  $A_{ii}^X = 1$  if  $x_j$  is the one next item of  $x_i$ ,  $\operatorname{argmax}_{x_i \in \mathcal{X}} \mathbb{P}^X \left( x_i | S^X, S^Y, S \right)$ , if next item  $\in \mathcal{X}$ (1) $\operatorname{argmax}_{y_i \in \mathcal{Y}} \mathbb{P}^Y \left( y_j | S^X, S^Y, S \right)$ , if next item  $\in \mathcal{Y}$ 





#### ATAI Advanced Technique of Artificial Intelligence

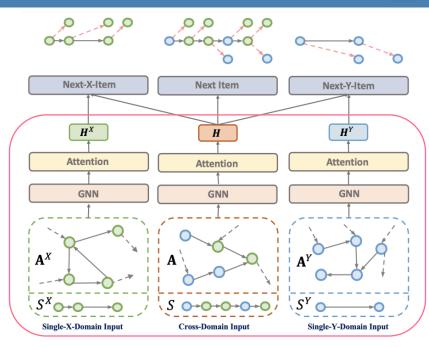



Figure 3: A toy example of sequential training objective for CDSR. The red dotted lines indicate the next prediction item.

#### Method

$$\mathbf{E}^{X} \in \mathbb{R}^{|\mathcal{X}| \times d}, \quad \mathbf{E}^{Y} \in \mathbb{R}^{|\mathcal{Y}| \times d} \quad \mathbf{E} \in \mathbb{R}^{(|\mathcal{X}| + |\mathcal{Y}|) \times d}, \quad \mathbf{T} \in \mathbb{R}^{M \times d}$$
$$\mathbf{G}_{0}^{X} = \mathbf{E}^{X}, \mathbf{G}_{0}^{Y} = \mathbf{E}^{Y}, \mathbf{G}_{0} = \mathbf{E},$$

$$\mathbf{G}_1^X = \operatorname{Norm}(\mathbf{A}^X)\mathbf{G}_0^X, \quad \mathbf{G}_1^Y = \operatorname{Norm}(\mathbf{A}^Y)\mathbf{G}_0^Y, \quad \mathbf{G}_1 = \operatorname{Norm}(\mathbf{A})\mathbf{G}_0, \quad (2)$$

 $\texttt{Norm}(\cdot)$  denote the row-normalized function

$$\mathbf{G}^{X} = \operatorname{Mean}(\mathbf{G}_{l}^{X}) + \mathbf{E}^{X}, \mathbf{G}^{Y} = \operatorname{Mean}(\mathbf{G}_{l}^{Y}) + \mathbf{E}^{Y}, \mathbf{G} = \operatorname{Mean}(\mathbf{G}_{l}) + \mathbf{E}.$$
 (3)

$$S^X = [\langle pad \rangle, x_1, x_2, \langle pad \rangle, x_3]$$
  $S^Y = [y_1, \langle pad \rangle, \langle pad \rangle, y_2, \langle pad \rangle]$   $S = [y_1, x_1, x_2, y_2, x_3]$ 

$$\begin{split} \boldsymbol{H}^{X} &= \texttt{AttEncoder}^{X}(S^{X}, \mathbf{G}^{X}), \quad \boldsymbol{H}^{Y} = \texttt{AttEncoder}^{Y}(S^{Y}, \mathbf{G}^{Y}), \\ \boldsymbol{H} &= \texttt{AttEncoder}(S, \mathbf{G}), \end{split} \tag{4}$$

 $H^X \in \mathbb{R}^{|S| \times d}, H^Y \in \mathbb{R}^{|S| \times d}, H \in \mathbb{R}^{|S| \times d}$ 



Single-Domain Item Prediction.

$$\mathcal{L}_{\text{single}}^{X} = \sum_{S^{X} \in \mathcal{S}} \sum_{t} \mathcal{L}_{\text{single}}^{X} (S^{X}, t)$$

$$\mathcal{L}_{\text{single}}^{X} (S^{X}, t) = -\log P_{\text{single}}^{X} (x_{t+1} | [ < \text{pad}, x_{1}, x_{2}, < \text{pad}, \dots, x_{t} ] ),$$

$$P_{\text{single}}^{X} (x_{t+1} | [\dots, x_{t}]) = \text{Softmax} (\boldsymbol{h}_{t}^{X} \mathbf{W}^{X} + \boldsymbol{h}_{t} \mathbf{W}^{X})_{x_{t+1}}$$
(6)

$$\boldsymbol{h}_t^X \in \mathbb{R}^{1 \times d}, \boldsymbol{h}_t \in \mathbb{R}^{1 \times d}$$
  $\mathbf{W}^X \in \mathbb{R}^{d \times |\mathcal{X}|}$ 

Cross-Domain Item Prediction.

$$\mathcal{L}_{cross} = \sum_{S \in S} \sum_{t} \mathcal{L}_{cross}(S, t),$$

$$\mathcal{L}_{cross}(S, t) = \begin{cases} -\log P_{cross}^{X}(x_{t+1} | [y_{1}, x_{1}, x_{2}, \dots, x_{t}]), & (7) \\ -\log P_{cross}^{Y}(y_{t+1} | [y_{1}, x_{1}, x_{2}, \dots, x_{t}]), & (7) \end{cases}$$

$$P_{cross}^{X}(x_{t+1} | [y_{1}, x_{1}, x_{2}, \dots, x_{t}]) = \text{Softmax}(h_{t} \mathbf{W}^{X})_{x_{t+1}},$$

$$P_{cross}^{Y}(y_{t+1} | [y_{1}, x_{1}, x_{2}, \dots, x_{t}]) = \text{Softmax}(h_{t} \mathbf{W}^{Y})_{y_{t+1}},$$
(8)

ATA AdvancedTechnique of Artificial Intelligence

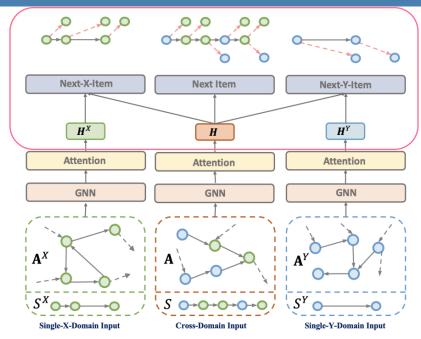
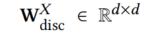
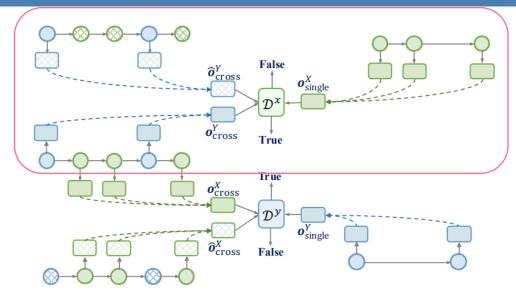



Figure 3: A toy example of sequential training objective for CDSR. The red dotted lines indicate the next prediction item.



Single- and Cross- Domain Prototype Representations.


$$\boldsymbol{o}_{\text{single}}^{X} = \text{Mean}(\boldsymbol{H}^{X}), \qquad \boldsymbol{o}_{\text{single}}^{Y} = \text{Mean}(\boldsymbol{H}^{Y}), \qquad (9)$$
$$\boldsymbol{o}_{\text{single}}^{X} \in \mathbb{R}^{1 \times d} \text{ and } \boldsymbol{o}_{\text{single}}^{Y} \in \mathbb{R}^{1 \times d}$$
$$\boldsymbol{o}_{\text{cross}}^{X} = \text{Mean}(\{\boldsymbol{h}_{t}: S_{t} \in \mathcal{X}\}), \quad \boldsymbol{o}_{\text{cross}}^{Y} = \text{Mean}(\{\boldsymbol{h}_{t}: S_{t} \in \mathcal{Y}\}), \qquad (10)$$


$$\widehat{S}^{X} = \operatorname{Corrupt}^{X}(S) = [\widehat{y}_{1}, x_{1}, x_{2}, \widehat{y}_{2}, \dots],$$

$$\widehat{S}^{Y} = \operatorname{Corrupt}^{Y}(S) = [y_{1}, \widehat{x}_{1}, \widehat{x}_{2}, y_{2}, \dots],$$
(11)

$$\mathcal{L}_{\text{disc}}^{X} = \sum_{(S^{X}, S^{Y}, S)_{u} \in \mathcal{S}} - \left( \log \mathcal{D}^{X} (\boldsymbol{o}_{\text{single}}^{X}, \boldsymbol{o}_{\text{cross}}^{Y}) + \log \left( 1 - \mathcal{D}^{X} (\boldsymbol{o}_{\text{single}}^{X}, \widehat{\boldsymbol{o}}_{\text{cross}}^{Y}) \right) \right)$$
(12)

$$\mathcal{D}^{X}(\boldsymbol{o}_{\text{single}}^{X}, \boldsymbol{o}_{\text{cross}}^{Y}) = \sigma(\boldsymbol{o}_{\text{single}}^{X} \mathbf{W}_{\text{disc}}^{X}(\boldsymbol{o}_{\text{cross}}^{Y})^{\top}), \quad (13)$$



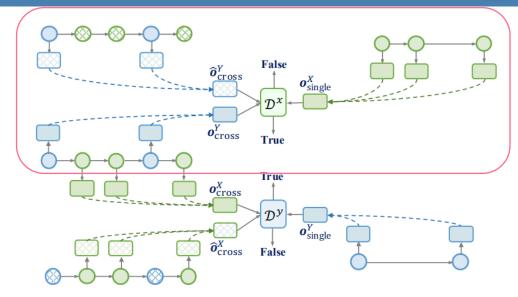


$$\mathcal{L} = \underbrace{\lambda(\mathcal{L}_{cross} + \mathcal{L}_{single}^{X} + \mathcal{L}_{single}^{Y})}_{\text{Sequential training objective}} + \underbrace{(1 - \lambda)(\mathcal{L}_{disc}^{X} + \mathcal{L}_{disc}^{Y})}_{\text{Contrastive infomax objective}}$$
(14)

$$\operatorname{argmax}_{x_i \in \mathcal{X}} \mathbb{P}^X \left( x_i | S^X, S^Y, S \right), \quad \text{where}$$

$$\mathbb{P}^X \left( x_i | S^X, S^Y, S \right) = \operatorname{Softmax} \left( \boldsymbol{h}_{|S|}^X \mathbf{W}^X + \boldsymbol{h}_{|S|} \mathbf{W}^X \right)_{x_i}.$$
(15)




 $\mathcal{L}$ 

$$= \underbrace{\lambda(\mathcal{L}_{cross} + \mathcal{L}_{single}^{X} + \mathcal{L}_{single}^{Y})}_{Sequential training objective} + \underbrace{(1 - \lambda)(\mathcal{L}_{disc}^{X} + \mathcal{L}_{disc}^{Y})}_{Contrastive infomax objective}$$
(14)

In the evaluation stage

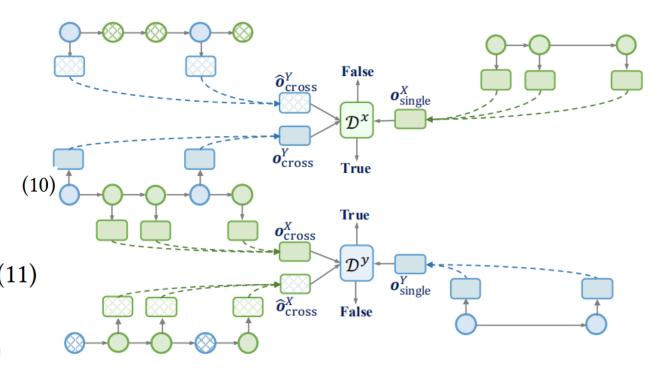
$$\operatorname{argmax}_{x_i \in \mathcal{X}} \mathbb{P}^X \left( x_i | S^X, S^Y, S \right), \quad \text{where}$$

$$\mathbb{P}^X \left( x_i | S^X, S^Y, S \right) = \operatorname{Softmax} \left( \boldsymbol{h}_{|S|}^X \mathbf{W}^X + \boldsymbol{h}_{|S|} \mathbf{W}^X \right)_{x_i}.$$
(15)





$$o_{\text{single}}^X = \text{Mean}(H^X), \qquad o_{\text{single}}^Y = \text{Mean}(H^Y),$$
(9)

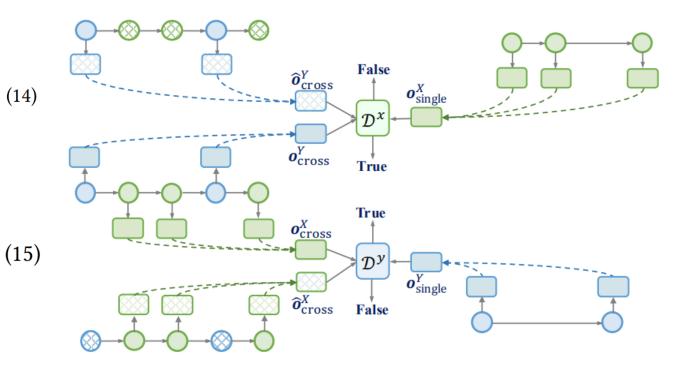

$$o_{\text{cross}}^X = \text{Mean}(\{h_t : S_t \in \mathcal{X}\}), \quad o_{\text{cross}}^Y = \text{Mean}(\{h_t : S_t \in \mathcal{Y}\}),$$

$$\widehat{S}^{X} = \text{Corrupt}^{X}(S) = [\widehat{y}_{1}, x_{1}, x_{2}, \widehat{y}_{2}, \dots],$$

$$\widehat{S}^{Y} = \text{Corrupt}^{Y}(S) = [y_{1}, \widehat{x}_{1}, \widehat{x}_{2}, y_{2}, \dots],$$

$$\mathcal{L}_{\text{disc}}^{X} = \sum_{(S^{X}, S^{Y}, S)_{u} \in \mathcal{S}} - \left(\log \mathcal{D}^{X}(o_{\text{single}}^{X}, o_{\text{cross}}^{Y}) + \log \left(1 - \mathcal{D}^{X}(o_{\text{single}}^{X}, \widehat{o}_{\text{cross}}^{Y})\right)\right)$$

$$\mathcal{D}^{X}(\boldsymbol{o}_{\text{single}}^{X}, \boldsymbol{o}_{\text{cross}}^{Y}) = \sigma \big(\boldsymbol{o}_{\text{single}}^{X} \mathbf{W}_{\text{disc}}^{X}(\boldsymbol{o}_{\text{cross}}^{Y})^{\top}\big),$$






 $\mathcal{L}$ 

$$= \underbrace{\lambda(\mathcal{L}_{cross} + \mathcal{L}_{single}^{X} + \mathcal{L}_{single}^{Y})}_{\text{Sequential training objective}} + \underbrace{(1 - \lambda)(\mathcal{L}_{disc}^{X} + \mathcal{L}_{disc}^{Y})}_{\text{Contrastive infomax objective}}$$

$$\underset{\mathbf{P}^{X}(x_{i}|S^{X}, S^{Y}, S) = \mathsf{Softmax} \left( \boldsymbol{h}_{|S|}^{X} \mathbf{W}^{X} + \boldsymbol{h}_{|S|} \mathbf{W}^{X} \right)_{x_{i}}.$$







#### Table 1: Statistics of Three CDSR scenarios.

| #Items           | #Train                                        | #Valid                                                             | #Test                                                                                                                                        | Avg.length                                           |
|------------------|-----------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 29,207<br>34,886 | 34,117                                        | 2,722<br>5,451                                                     | 2,747<br>5,659                                                                                                                               | 9.91                                                 |
| 36,845<br>63,937 | 58,515                                        | 2,032<br>5,612                                                     | 1,978<br>5,730                                                                                                                               | 11.98                                                |
| 8,367<br>11,404  | 120,635                                       | 4,525<br>2,404                                                     | 4,485<br>2,300                                                                                                                               | 29.94                                                |
|                  | 29,207<br>34,886<br>36,845<br>63,937<br>8,367 | 29,207<br>34,886<br>36,845<br>63,937<br>58,515<br>8,367<br>120,635 | $\begin{array}{cccc} 29,207 \\ 34,886 \\ & 34,117 \\ 36,845 \\ 63,937 \\ & 58,515 \\ & 5,612 \\ \hline \\ 8,367 \\ & 120,635 \\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |



## **Experiments**

| Methods                     |                             | Kitchen-domain recommendation |                             |                             |                               |                                |                      |                             |                                          |                             |                                      |                             |
|-----------------------------|-----------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------|--------------------------------|----------------------|-----------------------------|------------------------------------------|-----------------------------|--------------------------------------|-----------------------------|
|                             | MRR                         | NDCG                          |                             | HR                          |                               | MRR                            | NDCG                 |                             | HR                                       |                             |                                      |                             |
|                             |                             | @5                            | @10                         | @1                          | @5                            | @10                            |                      | @5                          | @10                                      | @1                          | @5                                   | @10                         |
| BPRMF<br>ItemKNN            | 4.10<br>3.92                | 3.55<br>3.51                  | 4.03<br>3.97                | 2.42<br>2.41                | 4.51<br>4.59                  | 5.95<br>5.98                   | 2.01<br>1.89         | 1.45<br>1.28                | 1.85<br>1.75                             | 0.73<br>0.58                | 2.18<br>1.99                         | 3.43<br>3.26                |
| NCF-MLP<br>CoNet            | 4.49<br>4.13                | 3.94<br>3.61                  | 4.51<br>4.14                | 2.68<br>2.42                | 5.10<br>4.77                  | 6.86<br>6.35                   | 2.18<br>2.17         | 1.57<br>1.50                | 2.03<br>2.11                             | 0.91<br>0.95                | 2.23<br>2.07                         | 3.65<br>3.71                |
| GRU4Rec<br>SASRec<br>SR-GNN | 5.79<br>7.30<br>7.84        | 5.48<br>6.90<br>7.58          | 6.13<br>7.79<br>8.35        | 3.63<br>4.73<br>5.03        | 7.12<br>8.92<br>9.88          | 9.11<br>11.68<br>12.27         | 3.06<br>3.79<br>4.01 | 2.55<br>3.35<br>3.47        | 3.10<br>3.93<br>4.13                     | 1.61<br>1.92<br>2.07        | 3.50<br>4.78<br>4.80                 | 5.22<br>6.62<br>6.84        |
| π-Net<br>PSJNet<br>MIFN     | 7.68<br>8.33<br><u>8.55</u> | 7.32<br>8.07<br><u>8.28</u>   | 8.13<br>8.77<br><u>9.01</u> | 5.25<br>5.73<br><u>6.02</u> | 9.25<br>10.28<br><u>10.43</u> | 11.75<br>12.45<br><u>12.71</u> | 3.53<br>4.10<br>4.09 | 2.98<br><u>3.68</u><br>3.57 | $     3.73 \\     4.32 \\     4.29     $ | 1.57<br>2.14<br><u>2.21</u> | $     4.34 \\     5.17 \\     4.86 $ | 6.67<br><u>7.15</u><br>7.08 |
| C <sup>2</sup> DSR          | 8.91                        | 8.65                          | 9.71                        | 5.84                        | 11.24                         | 14.54                          | 4.65                 | 4.16                        | 4.94                                     | 2.51                        | 5.74                                 | 8.18                        |

#### Table 2: Experimental results (%) on the Food-Kitchen scenario.





#### Movie-domain recommendation **Book-domain recommendation** Methods NDCG HR NDCG HR MRR MRR @5 @10 @1 @5 @10 @5 @10 @1 @5 @10 BPRMF 2.96 2.18 2.801.27 2.25 1.41 3.03 4.95 0.85 1.17 0.48 1.23ItemKNN 2.92 2.17 2.881.26 3.13 5.35 1.26 0.86 1.10 0.48 1.25 2.00NCF-MLP 3.05 2.262.96 1.41 3.13 5.30 1.43 1.06 1.26 0.62 1.39 2.18 CoNet 3.07 2.423.01 1.31 3.48 5.35 1.45 1.04 1.28 0.64 1.44 2.19 GRU4Rec 3.83 3.14 3.73 2.273.39 5.40 1.68 1.34 1.52 0.91 1.81 2.37SASRec 3.79 3.23 3.69 2.37 3.99 1.81 1.41 1.71 0.95 2.75 5.20 1.83 SR-GNN 3.85 3.27 3.78 2.224.19 5.81 1.78 1.40 1.66 0.89 1.90 2.72 $\pi$ -Net 4.17 2.25 2.84 4.16 3.72 2.524.75 6.11 2.171.84 2.03 1.43 PSJNet 5.30 4.63 4.06 4.76 2.787.53 2.442.07 2.35 2.58<u>3.28</u> 1.66 3.07 MIFN 2.31 1.60 2.46 5.05 4.215.20 2.83 5.51 <u>8.29</u> 2.51 2.12 C<sup>2</sup>DSR 5.54 4.76 5.76 3.13 6.47 9.55 2.552.17 2.45 1.71 2.843.75

#### Table 3: Experimental results (%) on the Movie-Book scenario.





#### Table 4: Experimental results (%) on the Entertainment-Education scenario.

| Methods MRI        | <b>Entertainment-domain recommendation</b> |       |       |       |       |       |       | Education-domain recommendation |              |       |              |       |  |
|--------------------|--------------------------------------------|-------|-------|-------|-------|-------|-------|---------------------------------|--------------|-------|--------------|-------|--|
|                    | MRR                                        | NDCG  |       | HR    |       |       | MRR   | NDCG                            |              | HR    |              |       |  |
|                    | 1011CC                                     | @5    | @10   | @1    | @5    | @10   | mut   | @5                              | @10          | @1    | @5           | @10   |  |
| BPRMF              | 45.97                                      | 47.38 | 50.11 | 35.98 | 57.65 | 66.08 | 46.50 | 47.51                           | 49.27        | 38.69 | 54.86        | 60.26 |  |
| ItemKNN            | 47.81                                      | 49.24 | 52.01 | 37.91 | 59.44 | 67.93 | 46.22 | 47.23                           | 49.22        | 38.08 | 54.86        | 61.04 |  |
| NCF-MLP            | 44.94                                      | 47.57 | 50.61 | 31.66 | 61.73 | 71.08 | 46.24 | 48.73                           | 50.66        | 35.17 | 60.56        | 66.43 |  |
| CoNet              | 45.76                                      | 48.31 | 51.63 | 32.30 | 62.45 | 72.68 | 47.83 | 50.11                           | 52.22        | 36.60 | 61.65        | 68.04 |  |
| GRU4Rec            | 45.61                                      | 47.48 | 51.46 | 32.73 | 61.06 | 73.35 | 51.35 | 53.88                           | 56.21        | 39.95 | 66.13        | 73.21 |  |
| SASRec             | 50.44                                      | 52.67 | 56.10 | 37.05 | 66.39 | 76.92 | 53.69 | 55.87                           | 58.64        | 41.86 | 68.04        | 76.56 |  |
| SR-GNN             | 50.67                                      | 52.77 | 56.47 | 37.43 | 66.30 | 77.17 | 54.74 | 56.73                           | 59.69        | 43.08 | 68.43        | 77.47 |  |
| $\pi$ -Net         | 52.68                                      | 54.88 | 57.63 | 40.91 | 67.15 | 75.11 | 55.05 | 57.23                           | 59.32        | 44.26 | 68.21        | 74.65 |  |
| PSJNet             | 53.50                                      | 57.57 | 60.07 | 42.52 | 68.94 | 76.56 | 55.94 | 58.18                           | <u>60.15</u> | 45.21 | <u>69.01</u> | 75.08 |  |
| C <sup>2</sup> DSR | 53.87                                      | 56.20 | 59.35 | 40.89 | 69.45 | 79.08 | 56.72 | 59.05                           | 61.56        | 45.13 | 71.04        | 79.21 |  |



### Experiments

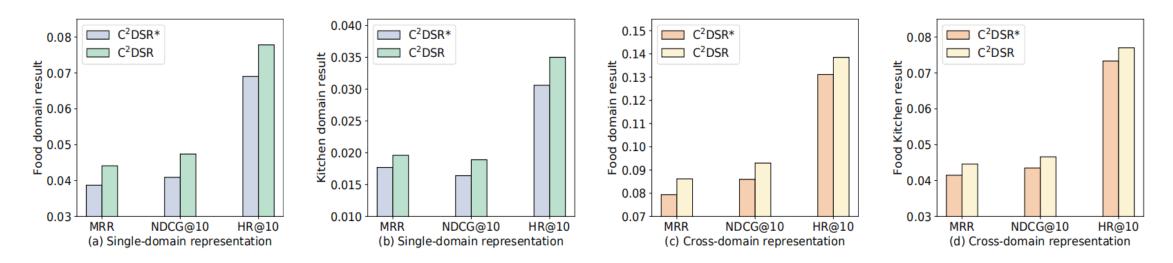



Figure 5: The predictive results of single-domain and cross-domain representations on Food-Kitchen.





| Model Variants               |      | Food-doma | in    | Kitchen-domain |         |       |  |
|------------------------------|------|-----------|-------|----------------|---------|-------|--|
|                              | MRR  | NDCG@10   | HR@10 | MRR            | NDCG@10 | HR@10 |  |
| GRU4Rec                      | 5.79 | 6.13      | 9.11  | 3.06           | 3.10    | 5.22  |  |
| GRU4Rec++                    | 6.92 | 7.18      | 10.10 | 3.21           | 3.28    | 5.63  |  |
| C <sup>2</sup> DSR(GRU4Rec)* | 6.83 | 7.26      | 10.72 | 3.57           | 3.68    | 6.10  |  |
| C <sup>2</sup> DSR(GRU4Rec)  | 7.68 | 8.02      | 11.60 | 3.92           | 4.02    | 6.54  |  |
| SASRec                       | 7.30 | 7.79      | 11.68 | 3.79           | 3.93    | 6.62  |  |
| SASRec++                     | 8.09 | 8.70      | 13.11 | 4.20           | 4.45    | 7.55  |  |
| C <sup>2</sup> DSR*          | 8.73 | 9.36      | 13.66 | 4.41           | 4.55    | 7.70  |  |
| $C^2DSR$                     | 8.91 | 9.71      | 14.54 | 4.65           | 4.94    | 8.18  |  |

#### Table 5: Variants results on Food-Kitchen.



## Experiments

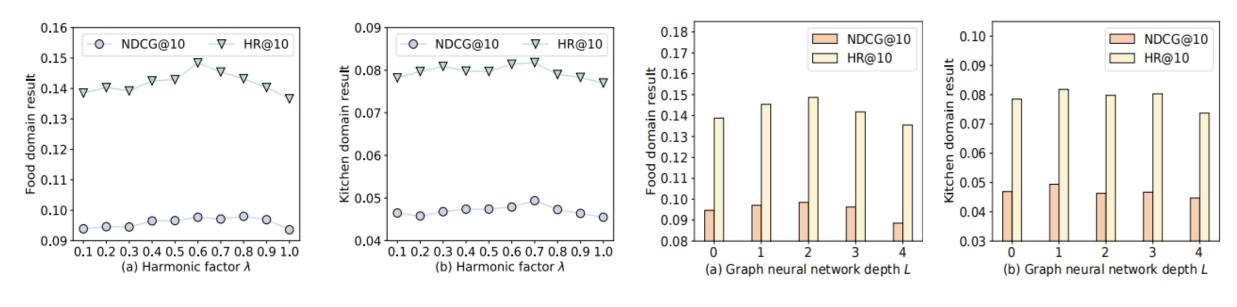



Figure 6: Result of harmonic factor  $\lambda$ .

Figure 7: Impact of GNN depth L.



# Thank you!